Appendix 3

The impacts on human health and the environment (presentation)

The impacts on human health & the environment arising for the spreading of sewage sludge to land

Rupert Hough, David Tompkins, John Williams & Dominic Duckett

31st May 2018 Avonbridge Community Hall, Falkirk

Project Overview

- The James Hutton Institute, together with RSK ADAS and Aqua Enviro, have been contracted by Scottish Government to:
 - Undertake an impartial study into potential negative impacts of sewage sludge on human health
 - Update existing guidance on how sewage sludges are used on land restoration sites,
 - Include guidance on how sewage sludges should be used on farm land
 - Evidence-based recommendations for better practices

Where you can help

Evidence-based recommendations for better practices

- You can help us understand where issues have arisen and under what circumstances
- This helps develop recommendations for changes to best practice or (if essential) legislation
- Not all issues will be within scope of the project
- Beyond this, we can record concerns and ensure that they feature in our report to Scottish Government

System mapping

- Primary aim is to understand the amounts of different sewage sludges produced in Scotland
- Who and how these are handled
- Volumes spread to land (and where)

Regulations and Codes of Practice

- Sludge Use In Agriculture Regulations (metals)
- Safe Sludge Matrix (microbial pathogens)
- PEPFAA and SNIFFER Codes (water and air pollution)
- Biosolids Assurance Scheme

CROP GROUP	UNTREATED SLUDGES	CONVENTIONALLY TREATED SLUDGES	ENHANCED TREATED SLUDGES
FRUIT	X	X	1
SALADS	×	(30 month harvest interval applies)	10 month
VEGETABLES	×	(12 month harvest interval applies)	✓ applies
HORTICULTURE	X	×	✓ _
COMBINABLE & ANIMAL FEED CROPS	X	1	1
- GRAZED GRASS &	X	(Deep injected or proughed down only)	
FORAGE - HARVESTED	X	(No grazing in season of application)	✓ I harvest interval applies

Treatment type	What it means for treated sludge quality	
Conventional	99% pathogen destruction	
Enhanced / Advanced	99.9999% pathogen reduction + Zero Salmonella	

Odour Measurements

Risk Modelling/Assessment

- Risk Assessment estimates potential for something to happen
- The approach tends to err on side of caution
- Risk Assessment flags up where further investigation may be needed...
- ...or what measures should be taken to reduce risks
- It cannot tell us that harm is actually occurring

Approaches (I)

- Commentary
 - Information either very poor, incomplete or missing
 - Based on literature review and expert judgement
 - Microplastics

Approaches (II)

Bayesian networks

- Computer models that aid decision making
- Used where data have large uncertainties, making fully quantitative estimates of risk less meaningful
- Mixture of 'hard' data, judgement and opinion
- Explores interaction between different factors
- Odours

Approaches (III)

- Fugacity modelling
 - Based around chemical partitioning
 - If a chemical is placed in an oil:water mixture, does it partition mainly to oil or water?

- This tells us something about how the chemical might move in the environment
- Lots of assumptions... Tends to over-estimate risk

Institute

Thank you

