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 Methodology 
 

 

 Synthetic Control 

This section is adapted from the forthcoming Abadie (2020) paper discussing the 

synthetic control methodology and feasibility28, as well as the Firpo and Possebom 

(2018) paper discussing alternative inference tests for the synthetic control 

methodology. 

 The Setting 

Assume that we have data for all for 𝐽 + 1 units: 𝑗 = 1,2, … , 𝐽 + 1, where 𝐽 is the 

amount of control units and 𝑗 = 1 is the treated unit (the United States, in our case). 

The donor pool 𝑗 = 2, … , 𝐽 + 1 is a collection of untreated units assumed to be not 

affected by the intervention. 

 

𝑗 = 1 𝑗 = 2, … , 𝐽 + 1 

Treated (one unit) Untreated (𝐽 units, referred to as the donor pool) 

 

Assume that our data spans 𝑇 periods, and that the first 𝑇0 periods occur before the 

intervention. For each unit 𝑗 and time 𝑡 we observe the outcome of interest, 𝑌𝑗𝑡. For 

each unit 𝑗 we also observe a set of 𝑘 predictors of the outcome, 𝑋1𝑗 , … , 𝑋𝑘𝑗, which 

                                            
28 Abadie, 2021. “Using Synthetic Controls: Feasibility, Data Requirements, and Methodological 

Aspects”. Journal of Economic Literature (forthcoming issue). Preview (2020) available at: 

https://economics.mit.edu/files/17847. 

Box 3. Methodology Summary 

This section describes the synthetic control methodology in more detail. The aim 

of the methodology is to estimate a counterfactual – in our case this would entail 

estimating single malt exports to the US if there was no tariff introduced. The 

difference between this counterfactual and observed exports (with the tariff) would 

be the estimated tariff impact. 

 

The counterfactual is constructed using a combination of countries which (a) do 

not have a change in tariff and (b) are comparable to the US in other respects. 

Many researchers suggest constructing this counterfactual (‘synthetic control’) 

using a weighted average, where the weights are chosen in such a way that our 

synthetic control resembles the US as closely as possible in its characteristics 

prior to the introduction of the tariff. 

https://economics.mit.edu/files/17847
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are themselves unaffected by the intervention. These predictors may include pre-

intervention values of 𝑌𝑗𝑡. 

 

𝑡 = 1, … , 𝑇0 𝑡 = 𝑇0 + 1, … , 𝑇 

Pre-treatment period (𝑇0 periods) Post-treatment period (𝑇 − 𝑇0) 

 

The 𝑘 × 1 vectors 𝑿1, … , 𝑿𝐽+1 contain the values of the predictors for units 𝑗 =

1, … , 𝐽 + 1. The 𝑘 × 𝐽 matrix, 𝑿0 = [𝑿2 ⋯ 𝑿𝐽+1] collects the values of predictors for all 

untreated units (a 𝑘 × 26 matrix, in our case). For each unit j and time period t we 

can define Yjt
N to be the potential response without intervention. For the single treated 

unit, j = 1, and a post-intervention period t > T0 we can define Y1t
I  to be the potential 

response with the intervention. 

 

The effect of the intervention of interest for the treated unit in period 𝑡 > 𝑇0 can be 

written as: 

 

𝛿1𝑡 = 𝑌1𝑡
𝐼 − 𝑌1𝑡

𝑁 

 

The challenge here is to estimate 𝑌1𝑡
𝑁 for 𝑡 > 𝑇0: any outcome 𝑌1𝑡 we observe for the 

treated unit after the introduction of the tariff is by definition 𝑌1𝑡
𝐼 . Note that the effect 

of the intervention can change over time (the 𝑡 subscript is retained). For example, 

we may hypothesise that the tariff takes a number of months (or quarters) to reach 

its full impact as US importers work to find suitable substitutes with a lower price 

point, or set up new trading relations. 

 

The synthetic control method approximates the treated unit by creating a weighted 

average of units in the donor pool. The synthetic control can be represented by a 

𝐽 × 1 vector of weights, 𝑾 = (𝑤2, … , 𝑤𝐽+1)′. Using this set of weights, the synthetic 

control estimators of  𝑌1𝑡
𝑁 and 𝛿1𝑡, respectively, are: 

 

𝑌̂1𝑡
𝑁 = ∑ 𝑤𝑗𝑌𝑗𝑡

𝐽+1

𝑗=2

 

and 

 

 𝛿̂1𝑡 = 𝑌1𝑡 − 𝑌̂1𝑡
𝑁 (1) 

 

To avoid extrapolation, the weights can be restricted to be non-negative and to sum 

to one: 

∑ 𝑤𝑗

𝐽+1

𝑗=2

= 1 
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If we were using nominal export values, this would be an issue – the Unites States is 

the top export market for Scotch whisky (single malt or otherwise), which means that 

any weighted average of countries in the donor pool would not be sufficient to 

approximate the actual values for 𝑡 ≤ 𝑇0. Scaling the values, for example by using 

per-capita values or growth rates, could alleviate this issue. 

 Choosing weights 

Weights in the 𝐽 × 1 vector 𝑾 = (𝑤2, … , 𝑤𝐽+1)
′
 can be chosen by the researcher (e.g. 

equal weights for a simple average or population-weights). Abadie (2020) proposes 

to choose 𝑤2, … , 𝑤𝐽+1 so that the resulting weighted average (synthetic control) not 

only best resembles the pre-intervention outcome 𝑌, but also the pre-intervention 

predictors for the treated unit. 

 

Given the non-negative constants 𝑣1, … , 𝑣𝑘 (for 𝑘 predictors), a set of weights 𝑾∗ =

(𝑤2
∗, … , 𝑤𝐽+1

∗)
′
  is chosen that minimises: 

 

 ‖𝑿1 − 𝑿0𝑾‖ = √∑ 𝑣ℎ(𝑋ℎ1 − 𝑤2𝑋ℎ2 − ⋯ − 𝑤𝑗+1𝑋ℎ𝐽+1)
2

𝑘

ℎ=1

 (2) 

 

such that weights 𝑤2, … , 𝑤𝐽+1 are non-negative and sum to one. This can be referred 

to as the ‘inner optimisation’. Some predictors will be more ‘important’ than others in 

this minimisation exercise. The positive constants 𝑣1, … , 𝑣𝑘 therefore reflect the 

weight placed on each of the 𝑘 predictors when reproducing the values of the treated 

unit’s predictors using the donor pool’s predictor values. The estimated treatment 

effect for time 𝑡 > 𝑇0 is then: 

 

𝛿̂1𝑡 = 𝑌1𝑡 − ∑ 𝑤𝑗
∗𝑌𝑗𝑡

𝐽+1

𝑗=2

 

 

The set of weights 𝑾∗ which minimises equation (2) needs a given set of constants 

𝑣1, … , 𝑣𝑘. For each choice of 𝑽 = (𝑣1, … , 𝑣𝑘), a different synthetic control is 

generated: 

 

𝑾(𝑽) = (

𝑤2(𝑽)
⋮

𝑤𝐽+1(𝑽)
) 

 

Much like choosing the set of weights 𝑾, the choice of 𝑽 can be left up to the 

researcher. For example, Abadie suggests choosing 𝑽 such that the synthetic 
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control 𝑾(𝑽) minimises the mean squared prediction error (for example, by dividing 

up the pre-treatment sample in training and testing periods like in many other time 

series applications). Researchers may also simply minimise the mean squared error 

for the entire pre-treatment period (i.e. minimise the distance between the observed 

and synthetic outcome values). The process of this optimisation is referred to as the 

‘outer optimisation’. 

 Implementation 

The process of choosing weights 𝑾∗ and constants 𝑽 (outer and inner optimisation, 

respectively) is handled by Becker and Klößner’s R package MSCMT (multivariate 

synthetic control method using time series).29 This implementation is able to handle 

time-series data, both in the outcome and predictors, as well as multiple outcome 

variables (if needed). A full description of the various optimisation algorithms and 

methods used in this package is available in Becker and Klößner (2018).30 

 Inference 

 Placebo tests 

Abadie et al (2010) propose a benchmark similar to Fisher’s Exact Hypothesis Test 

where they estimate, for each control unit 𝑗 = 2, … , 𝐽 + 1 and post-treatment time 

period 𝑡 = 𝑇0 + 1, … , 𝑇 an estimate 𝛿̂𝑗𝑡. The distribution of these estimates, 𝜹̂𝑗 =

(𝛿̂𝑗𝑇0+1 ⋯ 𝛿̂𝑗𝑇)
′
, can then be compared to the vector of estimates for the treated unit, 

𝜹̂1 = (𝛿̂1𝑇0+1 ⋯ 𝛿̂1𝑇)
′
. 

 

If the vector of estimated effects for the United States is substantially different in 

value than the distribution of effects for all control units, Abadie et al reject the null 

hypothesis of no effect. 

 

In some cases, certain time periods 𝑡 ∈ {𝑇0 + 1, … , 𝑇} may show a large effect while 

others do not. In these cases, it may be unclear whether to reject the null or not. To 

that end, Abadie et al (2010) propose two potential test statistics: one based on the 

post-treatment (root) mean squared prediction errors (MSPEs), and one based on 

the ratio of the (root) MSPEs pre- and post-treatment. 

3.2.1.1 Inference using the post-treatment fit 

Using the post-treatment RMSPE for country 𝑗 = 1, … , 𝐽 + 1: 

 

                                            
29 See Becker and Klößner (2017): https://cran.r-project.org/package=MSCMT  
30 Martin Becker and Stefan Klößner, 2018. “Fast and reliable computation of generalized synthetic 

controls”. Econometrics and Statistics, vol 5, pages 1-19. Preliminary version (2017) available at: 

http://www.oekonometrie.uni-saarland.de/papers/FastReliable.pdf  

https://cran.r-project.org/package=MSCMT
http://www.oekonometrie.uni-saarland.de/papers/FastReliable.pdf
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𝑅𝑀𝑆𝑃𝐸𝑗
𝑝𝑜𝑠𝑡

= √
∑ (𝑌𝑗,𝑡 − 𝑌̂𝑗,𝑡

𝑁)
2𝑇

𝑇0+1

𝑇 − 𝑇0
 

 

the p-value proposed by Abadie et al (2010) is given by: 

 

  𝑝 =
∑ 𝕀[𝑅𝑀𝑆𝑃𝐸𝑗

𝑝𝑜𝑠𝑡
≥ 𝑅𝑀𝑆𝑃𝐸1

𝑝𝑜𝑠𝑡
]𝐽+1

𝑗=1

𝐽 + 1
  (3) 

 

where the indicator function 𝕀[𝑅𝑀𝑆𝑃𝐸𝐽 ≥ 𝑅𝑀𝑆𝑃𝐸1] takes a value of 1 when 

𝑅𝑀𝑆𝑃𝐸𝐽 ≥ 𝑅𝑀𝑆𝑃𝐸1, and 0 otherwise. Alternatively, the 𝑀𝑆𝑃𝐸 can be used. 

 

Intuitively, this compares the post-treatment fit of the treated unit to the post-

treatment fit of the placebo tests, and if it is unusually large compared to the fits 

obtained by the control units’ synthetic controls, the p-value is small. 

 

This, however, requires us to limit the control units used by comparing their pre-

treatment fit: one of the control units will ultimately have the largest export value per 

capita, and its synthetic control will fit poorly. Therefore, its post-treatment fit will also 

be poor, and its RMSPE will be high. Abadie et al propose imposing a restriction on 

the ratio between the treated unit’s pre-treatment fit and the control units’ pre-

treatment fits to remedy this. 

3.2.1.2 Inference using the ratio of post- to pre-treatment fits 

One way to avoid limiting the size of the donor pool is by using the ratio of post- to 

pre-treatment fits instead of only the post-treatment fit. This is also alluded to in 

Abadie et al (2010) and is the test statistic of choice in Abadie et al (2015). 

 

Using a ratio of root mean squared prediction errors (RMSPE) given by: 

 

  
𝑅𝑀𝑆𝑃𝐸𝑗

𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑀𝑆𝑃𝐸𝑗

𝑝𝑜𝑠𝑡

𝑅𝑀𝑆𝑃𝐸𝑗
𝑝𝑟𝑒 = √

∑ (𝑌𝑗,𝑡 − 𝑌̂𝑗,𝑡
𝑁)

2𝑇
𝑇0+1 (𝑇 − 𝑇0)⁄

∑ (𝑌𝑗,𝑡 − 𝑌̂𝑗,𝑡
𝑁)

2𝑇0
𝑡=1 𝑇0⁄

 

 

 (4) 

the p-value can be defined as: 

 

  𝑝 =
∑ 𝕀[𝑅𝑀𝑆𝑃𝐸𝑗

𝑟𝑎𝑡𝑖𝑜 ≥ 𝑅𝑀𝑆𝑃𝐸1
𝑟𝑎𝑡𝑖𝑜]𝐽+1

𝑗=1

𝐽 + 1
  (5) 
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where the indicator function 𝕀[𝑅𝑀𝑆𝑃𝐸𝑗
𝑟𝑎𝑡𝑖𝑜 ≥ 𝑅𝑀𝑆𝑃𝐸1

𝑟𝑎𝑡𝑖𝑜] takes a value of 1 when 

𝑅𝑀𝑆𝑃𝐸𝑗
𝑟𝑎𝑡𝑖𝑜 ≥ 𝑅𝑀𝑆𝑃𝐸1

𝑟𝑎𝑡𝑖𝑜, and 0 otherwise.31 

 

In short, the 𝑅𝑀𝑆𝑃𝐸𝑗
𝑟𝑎𝑡𝑖𝑜 test statistic is a ratio of root mean squared prediction errors 

for country 𝑗 before and after the intervention. When a large enough proportion of 

control units have a ratio of pre- to post-treatment RMPSEs larger than the treated 

unit 𝑗 = 1, the p-value is large (and we fail to reject the null hypothesis of no effect at 

some significance level 𝛼). 

 

3.2.1.3 Null hypothesis 

 

The (two-sided) null hypothesis for both of these tests is given by: 

 

𝐻0 ∶  𝛿𝑗𝑡 = 0 for each region 𝑗 ∈ {1, … , 𝐽 + 1} and time period 𝑡 ∈ {1, … , 𝑇} 

 

This is a fairly restrictive inference assumption, as recognised by Ferman, Pinto, and 

Possebom (2018). In the absence of random assignment (of the treatment), this p-

value can be interpreted as the probability of obtaining an estimated value for the 

test statistic at least as large as the value obtained using the treated case, as if the 

treatment were randomly assigned among the data (i.e., our control units). 

 

 Confidence sets 

Ferman, Pinto, and Possebom (2018) extend the inference procedure for the 

synthetic control method to allow for any sharp hypothesis, where the null hypothesis 

for a constant treatment effect is given by: 

 

𝐻0
𝑐 ∶  𝑌𝑗,𝑡

𝐼 = 𝑌𝑗,𝑡
𝑁 + 𝑐 × 𝕀[𝑡 ≥ 𝑇0 + 1] 

 

in each region 𝑗 ∈ {1, … , 𝐽 + 1} and time period 𝑡 ∈ {1, … , 𝑇}, and 𝑐 ∈ ℝ. This can be 

rephrased as: 

 

𝐻0
𝑐 ∶  𝛿𝑗𝑡 = 𝑐 × 𝕀[𝑡 ≥ 𝑇0 + 1] 

 

Ferman, Pinto, and Possebom also note that more general treatment effect functions 

can also be used – e.g., where the treatment effect is not constant over time, or 

varies by region as well as time. 

 

                                            
31 A ratio of mean squared error predictions can also be used. This would alter the test statistic for 

each country and simply shift the scale. This is used, for example, in Firpo and Possebom, 2018. 
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The test statistic seen in equation (4) can be modified to allow for this intervention 

effect: 

 

  
𝑅𝑀𝑆𝑃𝐸𝑗

𝑐 = √
∑ (𝑌𝑗,𝑡 − 𝑌̂𝑗,𝑡

𝑁 − 𝑐 × 𝕀[𝑡 ≥ 𝑇0])
2𝑇

𝑇0+1 (𝑇 − 𝑇0)⁄

∑ (𝑌𝑗,𝑡 − 𝑌̂𝑗,𝑡
𝑁 − 𝑐 × 𝕀[𝑡 ≥ 𝑇0])

2𝑇0
𝑡=1 𝑇0⁄

 

 

 (6) 

while the p-value in equation (5) becomes: 

 

  𝑝𝑐 =
∑ 𝕀[𝑅𝑀𝑆𝑃𝐸𝑗

𝑐 ≥ 𝑅𝑀𝑆𝑃𝐸1
𝑐]𝐽+1

𝑗=1

𝐽 + 1
  (7) 

 

Note that Ferman, Pinto, and Possebom also allow for country-weights in this ratio to 

vary using some sensitivity parameter 𝜙 ∈ ℝ+ and a vector 𝝂 = (𝜈1, … , 𝜈𝐽+1). Here, 

we focus on the case where 𝜙 = 0 and 𝝂 = (1, … ,1), extending the equal-weight 

inference procedure in Abadie et al (2010) to test for any sharp hypothesis.32 

 

Inverting the test statistic allows us to estimate confidence sets, where a general 

(1 − 𝛼) confidence set can be constructed as follows: 

 

𝐶𝑆(1−𝛼) = {𝑓 ∈ ℝ{1,…,𝑇} ∶ 𝑓(𝑡) = 𝑐 𝑎𝑛𝑑 𝑝𝑐 > 𝛼} 

 

This set contains all constant-in-time intervention effects whose associated null 

hypotheses are not rejected by the inference procedure. In some cases, a one-sided 

test may be desirable (for example, isolating only negative effects post-treatment).33 

                                            
32 Sensitivity analysis could be performed by varying 𝜙 and 𝝂. 
33 A one-sided null hypothesis may be given by 𝐻0

𝑐 ∶  𝛿𝑗,𝑡 < 𝑐 where a mean prediction error test 

statistic could be used, 𝑀𝑃𝐸𝑗
𝑐 =

∑ (𝑌𝑗,𝑡−𝑌̂𝑗,𝑡
𝑁 −𝑐×𝕀[𝑡≥𝑇0])𝑇

𝑇0+1 (𝑇−𝑇0)⁄

∑ (𝑌𝑗,𝑡−𝑌̂𝑗,𝑡
𝑁 −𝑐×𝕀[𝑡≥𝑇0])

𝑇0
𝑡=1 𝑇0⁄

, where the p-value 𝑝𝑐 can be calculated 

as 𝑝𝑐 =
∑ 𝕀[𝑀𝑃𝐸𝑗

𝑐<𝑀𝑃𝐸1
𝑐]

𝐽+1
𝑗=1

𝐽+1
. 

 

 

 




